Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

II. Events-Based Probability Theory

Office Hours:

BKD, 6th floor of Sirindhralai building

Wednesday 14:30-15:30

Friday 14:30-15:30

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

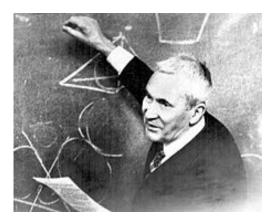
prapun@siit.tu.ac.th

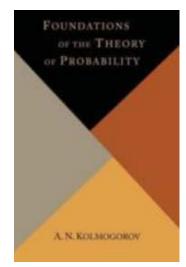
5 Foundation of Probability Theory

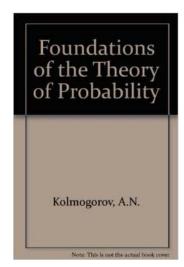
Office Hours:

BKD, 6th floor of Sirindhralai building

Wednesday 14:30-15:30


Friday 14:30-15:30

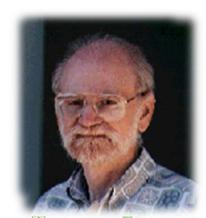

Kolmogorov


- Andrey Nikolaevich Kolmogorov
- Soviet Russian mathematician
- Advanced various scientific fields
 - probability theory
 - topology
 - classical mechanics
 - computational complexity.
- 1922: Constructed a **Fourier series** that diverges almost everywhere, gaining international recognition.
- 1933: Published the book, **Foundations of the Theory of Probability**, laying the modern axiomatic foundations of probability theory and establishing his reputation as the world's leading living expert in this field.

This book is available at

[https://archive.org/details/foundationsofthe00kolm]

I learned probability theory from

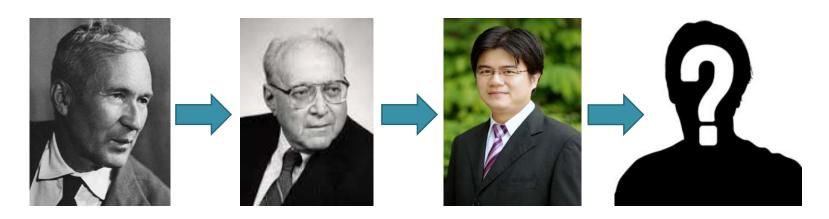

Eugene Dynkin

Philip Protter

Gennady Samorodnitsky

Terrence Fine

Xing Guo


Toby Berger

Rick Durrett

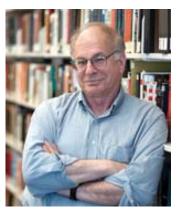
Not too far from Kolmogorov

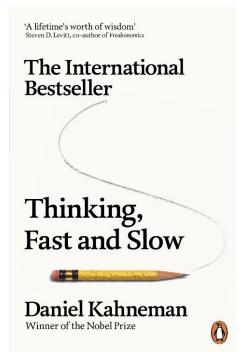
You can be

the 4th-generation

probability theorists

Probability and Random Processes ECS 315


Asst. Prof. Dr. Prapun Suksompong


prapun@siit.tu.ac.th

Event-Based Properties

Daniel Kahneman

- Daniel Kahneman
- Israeli-American psychologist
- 2002 **Nobel** laureate
 - In Economics
- Hebrew University, Jerusalem, Israel.
- Professor emeritus of psychology and public affairs at **Princeton** University's Woodrow Wilson School.
- With Amos **Tversky**, Kahneman studied and clarified the kinds of misperceptions of randomness that fuel many of the common fallacies.

K&T: Q1

Imagine a **woman** named **Linda**, 31 years old, [outspoken = given to expressing yourself freely or insistently] **single**, **outspoken**, and very **bright**. In college she majored in **philosophy**. While a student she was deeply concerned with **discrimination** and **social justice** and participated in **antinuclear demonstrations**.

- K&T presented this description to a group of 88 subjects and asked them to
 - rank the eight statements (shown on the next slide) on a scale of 1 to 8 according to their probability, with
 - 1 representing the **most probable** and
 - 8 representing the least probable.

K&T: Q1 - Results

• Here are the results - from most to least probable

Statement	Average Probability	y Rank
Linda is active in the feminis	t movement.	2.1
Linda is a psychiatric social w	orker.	3.1
Linda works in a bookstore and takes yoga classes.		3.3
Linda is a bank teller and is a	ctive in the feminist	
movement.		4.1
Linda is a teacher in an elem	entary school.	5.2
Linda is a member of the Lea	gue of Women Voters.	5.4
Linda is a bank teller.		6.2
Linda is an insurance salespe	rson.	6.4

K&T: Q1 - Results (2)

- At first glance there may appear to be nothing unusual in these results: the description was in fact designed to be
 - representative of an active feminist and
 - unrepresentative of a bank teller or an insurance salesperson.

	Statement	Average Probability	y Rank	
Most probable	Linda is active in the feminist movement.		2.1	
1	Linda is a psychiatric social worker.		3.1	
	Linda works in a bookstore and	takes yoga classes.	3.3	
	Linda is a bank teller and is acti	ve in the feminist		
	movement.		4.1	
	Linda is a teacher in an elemen	tary school.	5.2	
	Linda is a member of the Leagu	e of Women Voters.	5.4	
\downarrow	Linda is a bank teller.		6.2	
Least likely	Linda is an insurance salesperso	on.	6.4	

K&T: Q1 - Results (3)

- Let's focus on just three of the possibilities and their average ranks.
- This is the order in which **85 percent** of the respondents ranked the three possibilities:

Statement	Average Probability Rank
Linda is active in the feminist mov	ement. 2.1
Linda is a bank teller and is active:	in the feminist
movement.	4.1
Linda is a bank teller.	6.2

• If nothing about this looks strange, then K&T have fooled you

K&T: Q1 - Contradiction

The probability that two events will both occur can never be greater than the probability that each will occur individually!

Statement	Average Probability Rank
Linda is active in the feminist move	
Linda is a bank teller and is active i	n the feminist
movement.	4.1
Linda is a bank teller.	6.2

K&T: Q2

- K&T were not surprised by the result because they had given their subjects a **large number of** possibilities, and the connections among the three scenarios could easily have gotten lost in the shuffle.
- So they presented the description of Linda to another group, but this time they presented **only three possibilities**:
 - Linda is active in the feminist movement.
 - Linda is a bank teller and is active in the feminist movement.
 - Linda is a bank teller.
- Is it now obvious that the middle one is the least likely?

K&T: Q2 - Results

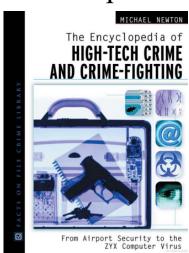
- To their surprise, **87 percent** of the subjects in this trial also **incorrectly** ranked the probability that "Linda is a bank teller and is active in the feminist movement" higher than the probability that "Linda is a bank teller".
- If the details we are given fit our mental picture of something, then the more details in a scenario, the more real it seems and hence the more probable we consider it to be
 - even though any act of adding less-than-certain details to a conjecture makes the conjecture less probable.
- Even **highly trained doctors** make this error when analyzing symptoms.
 - 91 percent of the doctors fall prey to the same bias.

[Amos Tversky and Daniel Kahneman, "Extensional versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment," Psychological Review 90, no. 4 (October 1983): 293–315.]

Misuse of probability in law

- It is not uncommon for experts in **DNA analysis** to testify at a criminal trial that a DNA sample taken from a crime scene matches that taken from a suspect.
- How certain are such matches?
- When DNA evidence was first introduced, a number of experts testified that false positives are impossible in DNA testing.
- Today DNA experts regularly testify that the odds of a random person's matching the crime sample are less than 1 in 1 million or 1 in 1 billion.
- In Oklahoma a court sentenced a man named <u>Timothy Durham</u> to prison even though **eleven witnesses** had placed him in another state at the time of the crime.

Misuse of probability in law


- It is not uncommon for experts in **DNA analysis** to testify at a criminal trial that a DNA sample taken from a crime scene matches that taken from a suspect.
- How certain are such matches?
- When DNA evidence was first introduced, a number of experts testified that false positives are impossible in DNA testing.
- Today DNA experts regularly testify that the odds of a random person's matching the crime sample are less than 1 in 1 million or 1 in 1 billion.
- In Oklahoma a court sentenced a man named <u>Timothy Durham</u> to more than 3,100 years in prison even though eleven witnesses had placed him in another state at the time of the crime.

Lab Error (Human and Technical Errors)

- There is **another stat**istic that is often **not presented** to the jury, one having to do with the fact that **labs make errors**, for instance, in **collecting** or **handling** a sample, by accidentally **mixing** or **swapping** samples, or by **misinterpreting** or incorrectly reporting results.
- Each of these errors is rare but not nearly as rare as a random match.
- The Philadelphia City Crime Laboratory admitted that it had swapped the reference sample of the defendant and the victim in a rape case
- A testing firm called Cellmark Diagnostics admitted a similar error.

Timothy Durham's case

- It turned out that in the initial analysis the lab had **failed to** completely **separate the DNA** of the rapist and that of the victim in the fluid they tested, and the combination of the victim's and the rapist's DNA produced a positive result when compared with Durham's.
- A later **retest** turned up the error, and Durham was released after spending nearly **four years** in prison.

DNA-Match Error + Lab Error

- Estimates of the error rate due to human causes vary, but many experts put it at around 1 percent.
- Most jurors assume that given the two types of error—the 1 in 1 billion accidental match and the 1 in 100 lab-error match—the overall error rate must be somewhere in between, say 1 in 500 million, which is still, for most jurors, beyond a reasonable doubt.